文獻標識碼: A
文章編號: 0258-7998(2013)02-0074-04
隨著電子技術和計算機技術的快速發展及機器人定位精度的不斷提高,智能移動機器人的應用越來越廣泛?,F已廣泛應用于工業生產、海空探索、軍事、家庭和一些服務行業。
精確的定位是移動機器人安全、有效地完成任務的關鍵和前提[1]。現有的大多數定位方法是通過機器自身攜帶的傳感器實時感知自身所處環境的位置和周圍信息,并不斷修正自身狀態,然后在有障礙物的環境中有效地完成任務。
卡爾曼濾波[2]是由一系列遞歸數學公式描述的。它們提供了一種高效可計算的方法來估計過程的狀態,并使估計均方誤差最小,應用廣泛且功能強大。但如果模型或系統噪聲特性估計與實際不符,則會降低濾波器的精度甚至導致濾波器發散。為了解決此問題,本文結合外部環境特征信息并在測量更新階段多次迭代濾波估計值,減小定位誤差,提高系統穩定性。
1 系統模型
本文的研究對象是一種三輪智能移動機器人,該機器人的其中一輪為萬向輪,另外兩輪為驅動輪。兩個驅動輪上裝有光電碼盤。利用驅動輪的碼盤數據,可以計算機器人的動態位置信息。機器人的正前方裝有激光雷達測距傳感器,可以采集已知環境中的路標信息。準確的系統模型直接影響著機器人的定位精度。因此,本文首先根據機器人信息建立了坐標系統模型、機器人運動模型和傳感器觀測模型。
1.3 觀測模型
根據機器人運動模型估計的位姿,只是實際位姿的一個粗略的估計,由于輪子打滑等原因存在一定誤差,而且隨著機器人移動時間的增加,誤差將越來越大,最終移動機器人將偏離自己的軌跡。為了修正誤差,移動機器人需要利用激光雷達傳感器,對路標進行觀測,修正自身的位姿。
本文利用激光雷達測距傳感器的觀測信息來修正機器人自身的位置。機器人在運動過程中,利用測距傳感器掃描周圍環境,獲得的觀測量z(k)是周圍環境路標相對于傳感器的距離和方向,然后根據先驗的地圖信息確定自身的實際位置。在定位問題的狀態空間描述中可以表示為:
眾所周知,迭代次數越多,計算量越大,時間越長。因此,實際機器人定位中,針對實際硬件條件,可以選取合適的迭代次數提高算法的定位精度,增強算法的收斂穩定性。
由兩次實驗結果可以看出,IEKF算法估計的路標特征和機器人路徑與實際基本相符。從實驗所得的誤差數據可以看出,相對于機器人自身的空間大小,誤差在可接受的范圍之內,表明該定位系統定位精度較高,具有較高的可靠性。
本文針對機器人定位精度問題,在傳統卡爾曼濾波的基礎上,提出一種迭代擴展卡爾曼濾波算法。該算法相對于傳統卡爾曼濾波算法,在狀態更新階段采用多次迭代更新,減少了系統線性化時所帶來的誤差,并將該算法與多傳感器信息融合技術結合應用于有路標的機器人定位。模型簡單、存儲量小。實驗結果表明該算法在保證實時性的同時較大地提高了定位精度,能夠滿足機器人高精度及可靠性等方面的要求。
參考文獻
[1] 丁偉,孫華,曾建輝.基于多傳感器信息融合的移動機器人導航綜述[J].傳感器與微系統,2006,25(7):1-3.
[2] 石杏喜,趙春霞.基于概率的移動機器人SLAM算法框架[J].計算機工程,2010,36(2):31-32.
[3] 曾健平, 王保同, 謝海情. 自主移動機器人定位系統 Kalman濾波算法改進[J].計算機應用研究,2011,28(5): 1710-1712.
[4] 李良群,姬紅兵,羅軍輝.迭代擴展卡爾曼粒子濾波器 [J].西安電子科技大學學報,2007,34(2):233-238.
[5] 陳小寧,黃玉清,楊佳. 多傳感器信息融合在移動機器人定位中的應用[J].傳感器與微系統,2008,27(6):110-113.
[6] 鄒智榮,蔡自興,陳白帆.移動機器人SLAM中一種混合 數據關聯方法[J]. 小型微型計算機系統,2011,32(7):1341-1343.