《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 解決方案 > 深入了解digiPOT規格與架構,提升交流性能

深入了解digiPOT規格與架構,提升交流性能

2013-06-18
作者:Miguel Usach Merino

數字電位計(digiPOT)通常用于方便的調整傳感器的交流或直流電壓或電流輸出、電源供電、或其他需要某種類型校準的器件,比如定時、頻率、對比度、亮度、增益,以及失調調整。數字設置幾乎可以避免機械電位計相關的所有問題,比如物理尺寸、機械磨損、游標調定、電阻漂移,以及對振動、溫度和濕度敏感等問題,還可以消除因使用螺絲刀導致的布局不靈活問題。

digiPOT有兩種使用模式,即電位計模式或可變電阻器模式。圖1所示為電位計模式,此時有3個端子,信號通過A端和B端連接,W端(類似游標)則提供衰減的輸出電壓。當數字比率控制輸入為全零時,游標通常與B端連接。

圖1.電位計模式

游標硬連線至任一端時,電位計就變成了簡單的可變電阻器, 如圖2所示。可變電阻器模式時需要的外部引腳更少,因此尺寸更小。部分digiPOT只有可變電阻器模式。

圖2.可變電阻器模式

digiPOT電阻端的電流或電壓極性沒有限制,但是交流信號的幅度不能超過電源供電軌(VDD 和 VSS)器件在可變電阻器模式,尤其是低電阻設置狀態下工作時,最大電流或電流密度, 應加以限制.

典型應用
信號衰減是電位計模式的固有特性,因為該器件本質上屬于分壓器。輸出信號定義為: VOUT = VIN × (RDAC/RPOT), 其中 RPOT是digiPOT的標稱端對端電阻, RDAC 是通過數字方式選擇的W端和輸入信號參考引腳之間的電阻,參考引腳通常為B端,如圖3所示.

圖3.信號衰減器

信號放大需要有源器件,通常是反相或同相放大器。通過適當的增益公式,電位計模式或可變電阻器模式均可使用

圖4顯示的是同相放大器,此時digiPOT相當于電位計,可通過反饋調整增益。由于部分輸出會反饋, RAW/(RWB + RAW),應等于輸入,理想增益為:

圖4.電位計模式中的同相放大器

該電路的增益與RAW, 成反比RAW接近零時會迅速上升,顯示出雙曲線傳遞函數特性。為了限制最大增益,可插入一個電阻與RAW(位于增益公式的分母內)串聯

如果需要線性增益關系,可以采用可變電阻器模式以及固定外部電阻,如圖5所示,增益現定義如下:

圖5.可變電阻器模式中的同相放大器

將低電容端(最新器件中為W引腳)連接至運算放大器輸入可獲得最佳性能.

digiPOT用于信號放大的優勢
圖4和圖5所示的電路具有高輸入阻抗和低輸出阻抗,可工作于單極性和雙極性信號。digiPOT可用于游標操作,采用固定外部電阻在更小的范圍內提供更高的分辨率,還可用于運算放大器電路,信號有無反轉均可。此外,digiPOT的溫度系數較低,電位計模式時通常為5 ppm/°C,可變電阻器模式時則為35 ppm/°C。

digiPOT用于信號放大的限制
處理交流信號時,digiPOT的性能受帶寬和失真的限制。受寄生器件影響,帶寬是指在小于3 dB衰減時能夠通過digiPOT的最大頻率。總諧波失真 (THD)(此處定義為后四個諧波的rms之和與輸出基波值的比值)是信號通過器件時衰減的量度。這些規格涉及的性能限制由內部digiPOT架構決定。通過分析,我們可以更好地全面了解這些規格,減少其負面

內部架構已從傳統的串聯電阻陣列(如圖6a所示)發展至分段式架構(如圖6b所示)。主要的改進是減少了所需內部開關的數量。第一種情況采用串行拓撲結構,開關數量為N = 2n是分辨率的位數。 n = 10, 時,需要1024個開關

圖6. a)傳統架構,b)分段式架構

專有(專利)分段式架構采用級聯連接,可以最大限度地減少開關總數。圖6b的例子顯示的是兩段式架構,由兩種類型的模塊組成,即左側的MSB和右側的LSB。

左側上下模塊是一串用于粗調位數的開關(MSB段)。右側模塊是一串用于精調位數的開關(LSB段)。MSB開關粗調后接近RA/RB比。LSB串的總電阻等于MSB串中的單個阻性元件,LSB開關可對主開關串上的任一點進行比率精調。A和B MSB開關為互補碼。

分段式架構的開關數量為:

N = 2m + 1 + 2n – m,

其中n是總位數,m是MSB字的分辨率位數。例如n = 10 and m = 5, 則需要96個開關。

分段式方案需要的開關數少于傳統開關串:

兩者相差的開關數 = 2n – (2m + 1 + 2n – m)

在該例中,節省的數量為

1024 – 96 = 928!

兩種架構都必須選擇不同電阻值的開關,充分考慮到模擬開關中的交流誤差源。這些CMOS(互補金屬氧化物半導體)開關由并行P溝道和N溝道MOSFET構成。這種基本雙向開關可以保持相當恒定的電阻(RON) 信號可達完整的供電軌.

帶寬
圖7顯示的是影響CMOS開關交流性能的寄生器件.

圖7.CMOS開關模式.

CDS = 漏極-源級電容; CD = 漏極-柵級 + 漏極-體電容; CS = 源級-柵級 + 源級-體電容.

傳遞關系如以下公式定義,其中包含的假設為:

  • 源阻抗為 0 Ω
  • 無外部負載影響
  • 無來自CDS的影響
  • RLSB  << RMSB

其中:

RDAC是設定電阻

RPOT是端對端電阻

CDLSB是LSB段的總漏極-柵級 + 漏極-體電容

CSLSB是LSB段的總源級-柵級 + 源級-體電容

CDMSB是MSB開關的漏極-柵級 + 漏極-體電容

CSMSB是MSB開關的源級-柵級 + 源級-體電容

moff是信號MSB路徑的斷開開關數量

mon是信號MSB路徑的接通開關數量

傳遞公式受各種因素影響,與代碼存在一定關聯,因此我們采用以下額外假設來簡化公式

CDMSB + CSMSB = CDSMSB

CDLSB + CSLSB  >> CDSMSB

(CDLSB + CSLSB) = CW (詳見數據手冊)

The CDS對傳遞公式沒有影響,但由于其出現的頻率通常比極點高的多RC 低通濾波器是主要的響應。理想的近似簡化公式為:

帶寬(BW)定義為:

其中CL是負載電容.

The BW與代碼有關,最差的情況是代碼在半量程時,AD5292的數字值為29= 512,AD5291的數字值為2= 128 (見目錄). 圖8顯示的是低通濾波效應,它受代碼影響,在不同標稱電阻與負載電容值時會發生變化.

圖8.各種電阻值的最大帶寬與負載電容

PC板的寄生走線電容也應加以考慮,否則最大帶寬會低于預期值,走線電容可以采用以下公式簡單計算:

其中

εR是板材的介電常數

A是走線區域(cm2)

d是層間距(cm)

如,假設FR4板材有兩個信號層和電源/接地層, ε= 4, 走線長度 = 3 cm寬度 = 1.2 mm, 層間距 = 0.3 mm; t則總走線電容約為 4 pF.

失真
THD用于量化器件作為衰減器的非線性。該非線性由內部開關及其隨電壓變化的導通電阻 RON而產生。圖9所示為放大的幅度失真示例.

圖9.失真

與單個內部無源電阻相比,開關的RON很小,其在信號范圍內的變化則更小。圖10顯示的是典型的導通電阻特性。

圖10.CMOS電阻

電阻曲線取決于電源電壓軌,電源電壓最大時,內部開關的RON 變化最小。電源電壓降低時,RON 變化和非線性都會隨之增加。圖11對比了低壓digiPOT在兩種供電電平下的 RON

圖11.開關電阻變化與電源電壓的關系

HD取決于各種因素,因此很難量化,若假設RON,的變化為10%,則以下公式可用于近似計算:

一般說來,標稱digiPOT電阻 (RPOT),越大,則分母越大,THD就越小.

權衡
RPOT增加后,失真和帶寬都會隨之降低,所以改進一項指標的同時必定會犧牲另一項。因此,電路設計人員必須在兩者之間做出適當的權衡。這也關系到器件的設計水平,因為IC設計人員必須平衡設計公式中的各個參數:

其中

COX 是氧化電容

μ 是電子(NMOS)或空穴(PMOS)的遷移常數

W是寬度

L是長度

偏置
從實用的角度來看,我們必須充分發揮各項特性。digiPOT通過容性耦合衰減交流信號時,若信號偏置達到電源的中值,則失真最小。這意味著開關工作在電阻特性線性最強的部分.

一種方法是采用雙電源供電,只需將電位計接地至電源共模端,信號便會產生正負向擺動。如果需要單電源供電,或者某些digiPOT不支持雙電源時,可以采用另一種方法,即添加 VDD/2 的失調電壓至交流信號。該失調電壓必須添加到兩個電阻端,如圖12所示。

圖12.單電源供電交流信號調理

若需要使用信號放大器,雙電源供電的反相放大器優于同相放大器(如圖13所示),原因有以下兩項:

  • THD性能更佳,因為反相引腳的虛地可將開關電阻集中在電壓范圍中間。
  • 因為反相引腳位于虛地,所以幾乎取消了游標電容CDLSB,令帶寬增幅較小(必須注意電路穩定性).

圖13.采用反相放大器digiPOT可調整放大

附錄——關于AD5291/AD5292

256/1024位數字電位計精度為1%,可編程20次
AD5291/AD5292數字電位計,如圖14所示,具有256/1024位分辨率。端對端電阻有20 kΩ、50 kΩ和100 kΩ可供選擇,誤差優于1%,溫度系數在可變電阻器模式下時為35 ppm/°C,分壓器 模式下時為5 ppm/°C(比率)。這些器件可實現與機械電位計相同的電子調整功能,但尺寸更小且更可靠。其游標位置可通過SPI兼容接口調整。在熔斷熔絲,將游標位置固定(此過程類似于將環氧樹脂涂在機械式調整器上)之前,可進行無限次調整。“去除環氧樹脂”過程最多可以重復20次。AD5291/AD5292采用9 V至33 V單電源或±9 V至±16.5 V雙電源,功耗8 μW。采用14引腳TSSOP封裝,工作溫度范圍為–40°C至+105°C(返回正文)

圖14.AD5291/AD5292功能框圖

本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 免费成年人 | 欧美日韩中文字幕一区二区高清 | 欧美a级黑粗大硬长爽 | 亚洲精品亚洲人成在线观看麻豆 | 嘿嘿视频在线观看 成人 | 三级第一页 | 久久亚洲网 | 2021入口一二三四麻豆 | 嘿嘿嘿视频免费网站在线观看 | 成人资源在线 | h片在线观看免费 | 久久线看观看精品香蕉国产 | 人人看人人看人做人人模 | 欧美片第一页 | 中国欧美日韩一区二区三区 | 国产 欧美 在线 | 国产成人精品视频免费 | 最近中文字幕在线观看 | 在线成人看片 | 国产精品单位女同事在线 | 国产精品日日摸夜夜添夜夜添1 | 亚洲欧美国产另类 | 成人黄色短视频 | 日韩亚洲综合精品国产 | 欧美日韩另类国产 | 动漫视频成人无h码在线观看 | 久久国产精品1区2区3区网页 | 综合自拍亚洲综合图区美腿丝袜 | 激情婷婷成人亚洲综合 | 国产一级视频播放 | 521a成v视频网站在线入口 | 老司机深夜影院入口aaaa | 久久黄色免费 | 国产无圣光高清一区二区 | 免费乱人伦| 韩国理伦伦片在线观看 | 2020国产成人久久精品 | 亚洲三级影视 | 亚洲综合小视频 | 无遮挡一级毛片 | 日韩黄色在线视频 |