袁穎,馬海嘯
(南京郵電大學 自動化學院,江蘇 南京 210046)
摘要:針對已有的無變壓器光伏逆變器存在共模電壓威脅人身安全的問題,在非隔離光伏逆變器(Highly Efficient Reliable Inverter Concept,HERIC)拓撲的基礎上,提出了一種新型的箝位型HERIC拓撲。箝位型HERIC拓撲是在逆變器直流輸入電容的中點加入了另一個開關管,使整個工作過程中共模電壓保持不變。通過仿真發現這一理論是可行的。然后分別搭建HERIC逆變電路和箝位型HERIC逆變電路,通過對比實驗和數據分析驗證了仿真結果,證明了箝位型HERIC拓撲的有效性和低漏電流特性。
關鍵詞:光伏逆變器;非隔離;拓撲;共模電壓;箝位
中圖分類號:TM464文獻標識碼:ADOI: 10.19358/j.issn.1674-7720.2017.01.011
引用格式:袁穎,馬海嘯.一種新型Heric光伏逆變器漏電流抑制技術研究[J].微型機與應用,2017,36(1):35-37,43.
0引言
圖1HERIC拓撲結構隨著新能源的興起,太陽能已經得到了廣泛應用,這其中包括光伏發電。傳統的光伏并網逆變器都是采用變壓器來進行電隔離的,以此保障人身安全。但是,這也存在變壓器的使用大大降低了系統效率的缺點。近幾年來人們提出了多種無變壓器光伏逆變器拓撲,這其中包括 HERIC拓撲(如圖1),該拓撲是在H橋的橋臂兩端加上兩個反向的開關管進行續流,以達到續流階段電網與光伏電池隔離的目的,這一創新具有極大的意義[14]。雖然較之前的變壓器其效率有很大提升,但該拓撲的共模電壓還是存在的,對人身安全還是有很大威脅。因此本文在HERIC拓撲上進行改進,在其續流通道的中點接一開關管在直流輸入電容的中點,以達到箝位的目的,使得整個工作過程中共模電壓保持不變。
1新型HERIC拓撲原理介紹
1.1控制方法
新型HERIC拓撲如圖2所示。
圖2新型Heric拓撲結構開關管驅動信號時序圖如圖3所示。ugs1~ugs7 分別對應S1~S7開關管的控制信號。其采用PWM控制方法[58]。三角波進行上下平移。上三角載波vc1與調制波vr(正弦波)交截產生控制波形ugs1和ugs4,下三角載波vc2與調制波vr交截產生控制波形ugs2和ugs4。ugs1和ugs2取或非得到ugs5、ugs6、ugs7。
1.2工作原理
該拓撲的工作過程有4個模態[9],如圖4所示。
?。?)模態1,正半周期,如圖4(a)所示,開關管S1、S4導通, 其余關斷。電流從正極出發,經過S1、Lf1、R、Lf2、S4,最后流回電源負極。該過程中uAN=VPV,uBN= 0,故共模電壓ucm=(uAN+uBN)/2=0.5 VPV。
?。?)模態2,正半周續流階段,如圖4(b)所示, S5、S6和S7導通,其余關斷。由于電感存在電流續流,依次流經Lf1、R、Lf2、S6、S5,該過程中太陽能電池與電網隔離。當Q點電位高于輸入電容中點電位時,二極管D1承受正向電壓導通,Q點電位被箝位至輸入電壓的一半。當Q點電位低于輸入電容中點電位時,開關管S7的導通使Q點電位被箝位至輸入電壓的一半。整個續流階段,uAN=0.5 VPV,uBN=0.5 VPV,故共模電壓ucm=0.5 VPV。
(3)模態3,負半周期,如圖4(c)所示,開關管S2、S3導通,其余關斷。電流從正端流出經過S3、Lf2、R、Lf1、S2。該過程中uAN=0,uBN=VPV,故共模電壓ucm=0.5 VPV。
(4)模態4,負半周續流階段,如圖4(d)所示,開關管S5、S6和S7導通,其余關斷。電流經過Lf2、R、Lf1、S5和S6。原理同模態2。整個階段uAN=0.5 VPV,uBN=0.5 VPV,故共模電壓ucm=0.5 VPV。
經過分析可知,整個工作過程中共模電壓保持不變,故不會產生共模漏電流。
2仿真結果
通過saber仿真軟件仿真的S1~S7開關管的控制信號波形如圖5所示。其中ugs1,4是S1和S4兩個開關管的的控制信號,ugs2,3是S2和S3的控制信號,ugs5,6,7是S5、S6、S7的控制信號。仿真輸出的電壓波形如圖6所示,為幅值在220 V左右的正弦波。
圖7為共模電壓分析圖,uAN、uBN是橋臂中點A、B對負端N的電壓,共模電壓ucm=(uAN+uBN)/2,uo為逆變器輸出電壓,通過計算得知共模電壓ucm維持在180 V左右。
從saber仿真軟件得到的仿真波形來看,實驗設想是可行的,通過波形數值分析可知,是能夠保證整個工作過程中共模電壓保持不變的。
3實驗結果
為了驗證實驗的正確性,現分別搭建HERIC逆變電路和箝位型Heric逆變電路,并在相同功率下比較實驗結果。實驗樣機參數如表1所示[1011]。圖8、圖9分別是HERIC逆變電路和箝位型HERIC逆變電路的實驗波形。Icm為漏電流,通過示波器對漏電流Icm進行頻譜分析(FFT)。
通過比較圖8(a)和圖9(a)的波形可知,箝位型HERIC逆變器拓撲的共模電壓較HERIC逆變器拓撲得到很好控制,波形更加平穩,共模電壓始終維持在直流輸入電壓的1/2左右。比較圖8(b)和圖9(b), FFT分析結果顯示,HERIC拓撲的漏電流大小為7 mA,而箝位型HERIC拓撲只有3.5 mA。
4結論
本文提出的新型箝位型HERIC逆變器拓撲在整個周期可產生恒定的共模電壓,且比HERIC拓撲具有更好的共模電壓抑制作用,降低了漏電流。
參考文獻
?。?] 馬琳. 無變壓器結構光伏并網逆變器拓撲控制研究[D]. 北京:北京交通大學,2011.
?。?] 張犁,孫凱,馮蘭蘭,等.一種低漏電流六開關非隔離全橋光伏并網逆變器[J].中國電機工程學報,2012,32(15):1-7.
?。?] 惠晶,方光輝.新能源轉換與控制技術[M].北京:機械工業出版社,2008.
?。?] 肖華鋒,劉隰蒲,蘭科. 一種零電壓轉換H6結構非隔離光伏并網逆變器[J]. 中國電機工程學報, 2014,34(3):363-370.
?。?] 吳學智,尹靖元,楊捷. 新型的無隔離變壓器單相光伏并網逆變器[J]. 電網技術, 2013,37(10):2712-2718.
?。?] GONZALEZ R,GUBIA E,LOPEZ J, et al. Transformerless singlephase multilevelbased photovoltaic inverter[J]. IEEE Transactions on Industrial Electronics,2008,55(7): 2694-2702.