《電子技術應用》
您所在的位置:首頁 > 可編程邏輯 > 業界動態 > ECCV 2018 | 騰訊AI Lab提出正交深度特征分解算法:在多個跨年齡人臉識別任務中創造新記錄

ECCV 2018 | 騰訊AI Lab提出正交深度特征分解算法:在多個跨年齡人臉識別任務中創造新記錄

2018-09-10

這項工作由騰訊 AI Lab 獨立完成,其目的是通過研發新的深度學習模型以提高跨年齡人臉識別的精度。


在這篇文章里,我們提出了一種正交深度特征分解算法 OE-CNNs,通過把深度特征正交分解為年齡分量和身份分量,從而將年齡分量和身份分量有效分離開,從而達到減少年齡差異、提高跨年齡人臉識別精度的目標。


我們在多個跨年齡人臉識別的國際評測基準(FG-NET, Morph Album 2, CACD-VS)中都取得了國際領先的性能,顯著提高了跨年齡人臉識別的精度。此外,我們還建立了一個新的跨年齡人臉數據庫 CAF 以幫助促進跨年齡人臉識別研究。


跨年齡人臉識別是人臉識別領域中的一個極具挑戰性的國際性難題。眾所周知,同一個人的不同年齡階段的圖片會有非常大的差異,這些差異會嚴重影響到跨年齡人臉識別的精度。迄今為止,深度學習已經被廣泛運用到人臉識別,并且取得了非常好的性能。但是,對于跨年齡人臉識別,問題,由于同一個人在不同年齡階段下的多張人臉之間存在著非常顯著的差異,這嚴重影響到現有的深度人臉識別模型的性能。為了克服這個巨大的年齡差異,在這篇文章里我們研發了一種新的深度學習算法,該算法把深度特征按照模長方向和角度方向(這兩個方向是彼此正交的)分別分解為年齡成分和身份成分,如下圖所示。

微信圖片_20180910221326.jpg


其中,年齡成分被分解成一維徑向分量,而身份成分則分解為高維角度分量。這兩種分量最后通過多任務學習的方式同時訓練,最終的損失函數是二者損失的算術疊加:

微信圖片_20180910221350.jpg


其中身份成分的損失函數

微信圖片_20180910221412.jpg


而年齡成分的損失函數

微信圖片_20180910221446.jpg


基于這種新的分解模型我們可以把人臉的年齡分量和身份分量有效分離開,并基于身份分量來做跨年齡人臉識別從而有效提高跨年齡人臉識別的精度。


為了進一步提高跨年齡人臉識別性能,我們還采集了一個面向跨年齡人臉識別的的新型人臉數據庫 CAF。我們通過在網上搜集名人在不同年齡段拍的照片,以保證這些訓練圖片有足夠大的年齡差異。我們的搜集的人名來源于公共的信息庫,比如 IMDB, Forbes Celebrity, Wikipedia 等。我們的 CAF 數據庫有 4,668 個不同的人和這些人的 313,000 張圖片。這個數據庫的樣例和統計分布如下圖所示。

微信圖片_20180910221508.jpg


實驗結果

微信圖片_20180910221531.jpg


在上表的 FG-NET 跨年齡人臉識別任務中,我們的新算法 OE-CNNs 取得了高達 53.26% 的第一識別率,比第二名的 38.21% 足足高了超過 15% 的識別率。

微信圖片_20180910221553.jpg


在上表的 Morph Album 2 識別任務中,我們的算法也穩定地高于其它所有的人臉算法。

微信圖片_20180910221629.jpg


在上表的對比實驗中,能明顯看出增加了我們新建立的 CAF 人臉數據做訓練后,對于上表中的所有人臉算法,它們的識別率都能顯著獲得提升,這證明了 CAF 對于跨年齡人臉識別研究的幫助和價值。 


本站內容除特別聲明的原創文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創文章及圖片等內容無法一一聯系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯系電話:010-82306118;郵箱:aet@chinaaet.com。
主站蜘蛛池模板: 国产成人午夜视频 | 日日做日日摸夜夜爽 | 日韩欧美中文字幕在线观看 | 日本高清视频wwww色 | 久久久高清日本道免费观看 | 狠狠干很很操 | 一级毛片不卡片免费观看 | 极品三级| 日韩精品卡1卡二卡3卡四卡 | 国产精品偷伦视频播放 | 日韩精品卡1卡二卡3卡四卡 | 成人欧美精品大91在线 | 精品久久久久久中文字幕专区 | 色综合天天色综合 | 日日草草 | 欧美激情一区二区三级高清视频 | 欧美午夜视频一区二区三区 | 欧美成人高清 | 日韩欧美一区二区三区不卡 | 国产99视频在线观看 | 免费中文字幕在线 | 欧美日韩精品福利在线观看 | 久久精品九九亚洲精品天堂 | 日韩毛片网站 | 有码视频在线观看 | 久久精品动漫网一区二区 | 日韩有码第一页 | 欧美日韩高清在线观看一区二区 | 亚洲国产日韩欧美mv | 国产黄色在线免费观看 | 欧美在线视频第一页 | 午夜在线观看免费视频 | 天堂网欧美 | 日韩精品一区在线 | 2020久久精品国产免费 | 日韩a一级欧美一级在线播放 | 毛片爱做的片 | 日本福利写真福利视频 | 97人洗澡人人澡人人爽 | 国产精品视频一 | 大香网伊人久久综合网2021 |