《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 高速PCB電路電源完整性仿真分析
高速PCB電路電源完整性仿真分析
2019年電子技術(shù)應(yīng)用第9期
孟祥勝,車 凱,栗曉鋒,李玖法,李蘇炫,何雪琴
湖北汽車工業(yè)學(xué)院 電氣與信息工程學(xué)院,湖北 十堰442002
摘要: 針對(duì)日益復(fù)雜的高速印制電路板(Printed Circuit Board,PCB)電源電壓波動(dòng)問(wèn)題,提出一種基于電源分配網(wǎng)絡(luò)(Power Distribution Network,PDN)與目標(biāo)阻抗協(xié)同仿真設(shè)計(jì)的方法,對(duì)1.15 V電源網(wǎng)絡(luò)的電源完整性(Power Integrity,PI)進(jìn)行研究。主要涉及兩個(gè)方面:(1)直流分析,通過(guò)加寬覆銅面積、減少回流路徑等措施使1.15 V電壓降從9 mV跌落至2.5 mV、溫度從1.3 ℃降至0.1 ℃、直流電流密度從91.340 3 A/mm2降至82.393 5 A/mm2;(2)交流分析,從諧振分布和PDN輸入阻抗分析,在987.34 MHz諧振點(diǎn)處添加22 μF去耦電容,搭建去耦網(wǎng)絡(luò)去除風(fēng)險(xiǎn)點(diǎn)。仿真結(jié)果表明該方法有效地減少了高速PCB電路潛在的電壓波動(dòng)和目標(biāo)阻抗不匹配的風(fēng)險(xiǎn),從而提高了電源系統(tǒng)穩(wěn)定性和可靠性。
中圖分類號(hào): TN914.3
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.190163
中文引用格式: 孟祥勝,車凱,栗曉鋒,等. 高速PCB電路電源完整性仿真分析[J].電子技術(shù)應(yīng)用,2019,45(9):50-52,59.
英文引用格式: Meng Xiangsheng,Che Kai,Li Xiaofeng,et al. High-speed PCB circuit power integrity simulation analysis[J]. Application of Electronic Technique,2019,45(9):50-52,59.
High-speed PCB circuit power integrity simulation analysis
Meng Xiangsheng,Che Kai,Li Xiaofeng,Li Jiufa,Li Suxuan,He Xueqin
College of Electrical and Information Engineering,Hubei Automotive Industry Institute,Shiyan 442002,China
Abstract: Aiming at the increasingly complicated high-speed PCB power supply voltage fluctuation problem, a method based on PDN(Power Distribution Network) and target impedance co-simulation design is proposed for the 1.15 V power network. PI(Power Integrity) was studied. Mainly involved in two aspects:(1)DC analysis, by widening the copper area, reducing the return path and other measures to reduce the 1.15 V voltage drop from 9 mV to 2.5 mV, the temperature from 1.3 ℃ to 0.1 ℃, DC current density from 91.340 3 A/mm2 drops to 82.393 5 A/mm2;(2)AC analysis, from the resonance distribution and PDN input impedance analysis, add 22 μF decoupling capacitor at the 987.34 MHz resonance point to build a decoupling network to remove the risk point. The simulation results show that the method effectively reduces the risk of potential voltage fluctuation and target impedance mismatch in high-speed PCB circuits, thus improving the stability and reliability of the power system.
Key words : PCB;power integrity;PDN;target impedance

0 引言

    隨著半導(dǎo)體技術(shù)的快速發(fā)展,電子設(shè)備的集成度[1]不斷提高,性能不斷加強(qiáng),同時(shí)系統(tǒng)的功耗不斷降低,這給系統(tǒng)的電源設(shè)計(jì)帶來(lái)巨大挑戰(zhàn)。PI[2-5]的仿真分析已成為高速數(shù)字系統(tǒng)設(shè)計(jì)過(guò)程中不可或缺的環(huán)節(jié)之一,設(shè)計(jì)一個(gè)穩(wěn)定可靠的電源方案是系統(tǒng)正常工作的前提。本文以IMX53的8層高速板卡為例,通過(guò)目標(biāo)阻抗法對(duì)電源分配網(wǎng)絡(luò)[6-9]PDN問(wèn)題進(jìn)行優(yōu)化,使得系統(tǒng)的電源完整性滿足設(shè)計(jì)要求。

1 電源完整性分析

    PI是指電路系統(tǒng)的供電電源在經(jīng)過(guò)傳輸網(wǎng)絡(luò)后提供符合器件工作的電源要求。PI分析的目的為電源方案的設(shè)計(jì)提供指導(dǎo),為系統(tǒng)正常工作提供高性能電源;PI設(shè)計(jì)的目的是降低電源平面和地平面的阻抗,借助電源分析工具優(yōu)化電源平面和地平面阻抗,消除諧振點(diǎn)處阻抗不匹配,提高板卡的可靠性、安全性和電磁兼容性。

1.1 PDN的設(shè)計(jì)與目標(biāo)阻抗

    目前,PDN設(shè)計(jì)技術(shù)已經(jīng)成為混合數(shù)字系統(tǒng)設(shè)計(jì)的關(guān)鍵技術(shù)之一[10-13]。在高速數(shù)字系統(tǒng)中,PDN阻抗受頻率影響較大,電源供電端(Voltage Regulator Module,VRM)是PDN的電源供電端,不同的VRM會(huì)導(dǎo)致阻抗曲線發(fā)生變化;當(dāng)瞬時(shí)流通過(guò)時(shí),會(huì)導(dǎo)致電源平面阻抗不匹配,產(chǎn)生電源波動(dòng)和電壓擺動(dòng),造成系統(tǒng)供電不連續(xù),影響系統(tǒng)的正常工作[14-15]。為確保系統(tǒng)正常工作,去耦電容[16-17]應(yīng)盡量靠近芯片電源管腳處且保證阻抗盡量小,優(yōu)化電源平面的阻抗特性。

    高速PCB電路的PDN簡(jiǎn)化模型如圖1所示,該模型包括VRM、PCB平板電容、封裝基板電容、片上電容[18]和芯片。

wdz5-t1.gif

    去耦電容作為高速信號(hào)的終端負(fù)載和信號(hào)線上的隔離器件,當(dāng)負(fù)載瞬時(shí)電流發(fā)生變化時(shí),穩(wěn)壓電源不能實(shí)時(shí)響應(yīng),去耦電容將直接為負(fù)載芯片提供電流。因此在交流信號(hào)電路中加入耦合電容,降低了電源系統(tǒng)中的交流阻抗。PDN簡(jiǎn)化模型的目標(biāo)阻抗[19-21]定義如式(1)所示[22-23]

    wdz5-gs1.gif

    式中:ZT為目標(biāo)阻抗,Udd為電源電壓,rip為電壓波動(dòng)范圍,Imax為最大瞬態(tài)電流。

1.2 PI設(shè)計(jì)優(yōu)化流程

    針對(duì)日益突出的PI問(wèn)題,本文提出一種基于PDN與目標(biāo)阻抗協(xié)同仿真方法,PI設(shè)計(jì)優(yōu)化流程如圖2所示。首先通過(guò)直流壓降仿真分析1.15 V電源平面壓降、電流密度及溫升等指標(biāo),減少不合理的電源層分割以及不理想的電流路徑造成的壓降過(guò)大、電流密度偏大和溫升偏高等問(wèn)題;在此基礎(chǔ)上重點(diǎn)分析了L4_POWER 1.15 V電源網(wǎng)絡(luò)在1 MHz~1.5 GHz范圍內(nèi)的諧振頻點(diǎn),并結(jié)合多極網(wǎng)絡(luò)(Multi Pole Network,MPN)并聯(lián)多個(gè)22 μF去耦電容,消除在987.34 MHz產(chǎn)生的諧振效應(yīng),從而減少噪聲耦合;最后通過(guò)PDN輸入阻抗仿真分析1.15 V電源平面處阻抗特性,判斷ZT是否小于目標(biāo)阻抗,并根據(jù)判斷結(jié)果添加去耦電容消除諧振點(diǎn),去除PDN的諧振風(fēng)險(xiǎn)。

wdz5-t2.gif

2 仿真結(jié)果分析

2.1 IMX53板卡介紹

    本文以IMX53的8層板卡為例,進(jìn)行電源完整性仿真分析,仿真分析軟件采用Allegro PCB PI Option XL。IMX53板卡布線如圖3所示, PCB板疊層設(shè)置為:TOPL2_Gnd-L3_Signal_1-L4_Gnd/Pwr-L5_Gnd/Pwr-L6_Signal_2-L7_Gnd-Bottom,處理器IMX53主頻可擴(kuò)展到1 GHz~1.2 GHz,SDRAM采用MT41J128M16HA,主頻在1 333 MHz左右。JTAG口的電壓1.8 V,SDRAM電壓1.5 V,VDD_ANA_PLL電壓為1.3 V,NVCC_GPIO電壓為3.3 V,VDDGP電壓1.15 V。

wdz5-t3.gif

2.2 直流分析

    在高速數(shù)字系統(tǒng)設(shè)計(jì)中,存在大量平面層分割、過(guò)孔、不理想的電流路徑和信號(hào)線的分布,直接導(dǎo)致了PDN的直流供電受到影響。因此對(duì)電源平面進(jìn)行直流壓降仿真有利于指導(dǎo)電源平面的過(guò)孔設(shè)計(jì),降低過(guò)孔直流電流密度,同時(shí)改善PDN的直流特性,防止過(guò)高電壓降落產(chǎn)生的“軌道坍塌”造成的系統(tǒng)故障。直流壓降分析了VDDGP 1.15 V電源平面上的電壓降落。表1為該P(yáng)CB 1.15 V電源平面直流優(yōu)化前后結(jié)果。

wdz5-b1.gif

    電流密度的計(jì)算公式如式(2)所示:

    wdz5-gs2.gif

    式中:I為電源平面的電流密度;K是與環(huán)境相關(guān)常量包括內(nèi)線層和外線層,內(nèi)線層K=0.024,外線層K=0.048;T為溫升;A為電源網(wǎng)絡(luò)覆銅面積。通過(guò)對(duì)VDDGP 1.15 V電源平面的直流壓降仿真分析表明,優(yōu)化后1.15 V電源的電壓降落從9 mV降至2.5 mV,溫升從1.3 ℃降至0.1 ℃,電流密度從91.340 3 A/mm2降至82.393 5 A/mm2,優(yōu)化后的電源平面特性得到改善。

2.3 交流分析

2.3.1 諧振分布仿真分析

    PCB電源平面為分布式網(wǎng)絡(luò),可等價(jià)為矩形諧振腔。不同頻率的信號(hào)經(jīng)邊緣反射后產(chǎn)生諧振效應(yīng),導(dǎo)致在不同的諧振點(diǎn)產(chǎn)生不同的壓降。通過(guò)Sigrity Power SI工具進(jìn)行板級(jí)不同頻率的諧振點(diǎn)分析,包括芯片引腳電壓、阻抗連續(xù)特性、信號(hào)反射等,重點(diǎn)分析了L4_POWER 1.15 V電源平面在1 MHz~1.5 GHz范圍內(nèi)的諧振模式,發(fā)現(xiàn)在電源平面與地平面存在987.34 MHz的諧振效應(yīng), 如圖4(a)所示。為消除諧振效應(yīng),采用多極網(wǎng)絡(luò)(Multi Pole Network,MPN)并聯(lián)多個(gè)22 μF的去耦電容,搭建去耦網(wǎng)絡(luò)以達(dá)到匹配阻抗的目的,確保信號(hào)的有效傳輸。圖4顯示了通過(guò)去耦電容優(yōu)化前后的電源平面諧振情況,表明電源平面的電壓波動(dòng)滿足設(shè)計(jì)要求。

wdz5-t4.gif

2.3.2 諧振分布仿真分析

    PDN輸入阻抗仿真分析了負(fù)載處的高頻阻抗Z與目標(biāo)阻抗之間的關(guān)系,當(dāng)高頻阻抗大于目標(biāo)阻抗時(shí),電源電壓波動(dòng)會(huì)超出安全范圍,可能損壞芯片,造成電源系統(tǒng)的崩潰[24]。IMX53 1.15 V電源網(wǎng)絡(luò)允許波動(dòng)范圍為5%,最大電流為2 A,截至頻率987.34 MHz,本文中的板級(jí)目標(biāo)阻抗為28.75 mΩ,優(yōu)化后的1.15 V電源平面的PDN輸入阻抗為20.43 mΩ,小于目標(biāo)阻抗28.75 mΩ。

    1.15 V PDN輸入阻抗如圖5所示,優(yōu)化前電源阻抗超過(guò)目標(biāo)阻抗,通過(guò)在芯片周圍添加22 μF電容去除風(fēng)險(xiǎn)點(diǎn),添加過(guò)孔,減小過(guò)孔等效電阻(Equivalent Series Resistance,ESR)和等效電感(Equivalent Series Inductance,ESL)的壓降,降低電源平面阻抗。仿真結(jié)果表明在987.34 MHz內(nèi)輸入阻抗小于28.75 mΩ,1.15 V PDN輸入阻抗?jié)M足設(shè)計(jì)要求,不存在諧振頻率,仿真結(jié)果如圖5所示。

wdz5-t5.gif

3 結(jié)論

    本文以典型IMX53高速數(shù)字系統(tǒng)為例,提出一種基于PDN設(shè)計(jì)與目標(biāo)阻抗協(xié)同仿真設(shè)計(jì)方法并進(jìn)行直流和交流后仿真驗(yàn)證。在直流分析中,從電壓降、溫升和電流密度三個(gè)方面對(duì)1.15 V電源網(wǎng)絡(luò)進(jìn)行分析,通過(guò)增大覆銅面積、減少電流的回流路徑等措施使電源網(wǎng)絡(luò)直流電壓分布得到改善;在交流分析中,運(yùn)用目標(biāo)阻抗法對(duì)諧振分布和PDN輸入阻抗進(jìn)行分析,在電壓波動(dòng)較大處放置22 μF去耦電容,減小電源平面和地平面間的諧振,使1.15 V電源平面的電壓波動(dòng)符合設(shè)計(jì)要求。

參考文獻(xiàn)

[1] SRIDHARAN V,SWAMINATHAN M,BANDYOPADHYAY T.Enhancing signal and power integrity using double sided silicon interposer[J].IEEE Microwave and Wireless Components Letters,2011,21(11):598-600.

[2] WHATMOUGH P N,DAS S,HADJILAMBROU Z,et al.Power integrity analysis of a 28 nm dual-core ARM cortexA57 cluster using an all digital power delivery monitor[J].IEEE Journal of Solid-State Circuits,2017,52(6):1653-1654.

[3] KIM H,KIM J,PARK J.Design optimization of board level signal integrity depending on PCB stack-up configuration in a mobile device[C].2017 Asia-Pacific International Symposium on Electromagnetic Compatibility.IEEE,2017:334-336.

[4] SCOGNA A C.Signal integrity analysis of a 26 layers board with emphasis on the effect of nonfunctional pads[C].IEEE International Symposium on Electromagnetic Compatibility,2008:1-6.

[5] 徐慧敏,朱薇薇,施建安.基于多場(chǎng)景FSDB向量解析提高電源完整性分析覆蓋率[J].電子技術(shù)應(yīng)用,2018,44(8):10-12.

[6] 張木水.高速電路電源分配網(wǎng)絡(luò)設(shè)計(jì)與電源完整性分析[D].西安:西安電子科技大學(xué),2009.

[7] SWAMINATHAN M,KIM J,NOVAK I,et al.Power distribution networks for system on package:status and challenges[J].IEEE Transactions on Advanced Packaging,2004,27(2):286-300.

[8] 王保坡,杜勁松,田星,等.基于混合遺傳算法的去耦電容網(wǎng)絡(luò)設(shè)計(jì)[J].電子技術(shù)應(yīng)用,2015,41(7):146-149,153.

[9] 馬秀榮,白紅蕊,白媛,等.一種抑制電源分配網(wǎng)絡(luò)并聯(lián)諧振的方法[J].電子技術(shù)應(yīng)用,2012,38(8):59-62.

[10] 郭廣闊,黃春躍,吳松,等.基于HFSS的埋入式電容串?dāng)_分析[J].電子元件與材料,2014,33(4):60-63.

[11] SWAMINATHAN M,KIM J,NOVAK I,et al.Power distribution networks for system-on-package: status and challenges[J].IEEE Transactions on Advanced Packaging,2004,27(2):286-300. 

[12] WANG C,MAO J,SELLI G,et al.An efficient approach for power delivery network design with closed-form expressions for parasitic interconnect inductances[J].IEEE Transactions on Advanced Packaging,2006,29(2):320-334.

[13] SWAMINATHAN M,ENGIN A E.Power integrity modeling and design for semiconductors and systems[M].Englewood Cliffs,NJ,USA:Prentice-Hall,2007.

[14] CHANDANA M,MERVIN J,SELVAKUMAR D.Power integrity analysis for high performance design[C].2015 International Conference on Control,Electronics,Renewable Energy and Communications(ICCEREC),2015:48-53.

[15] Lu Hongmin,Guo Yanlin,Wei Jing,et al.New ultrawideband electromagnetic bandgap structure used for simultaneous switching noise suppression[J].Journal of Beijing University of Posts and Telecommunications,2012,35(4):15-18.

[16] WU T L,CHUANG H H,WANG T K.Overview of power integrity solutions on package and PCB: ecoupling and EBG Isolation[J].IEEE Transactions on Electromagnetic Compatibility,2010,52(2):346-356.

[17] 馬秀榮,孔德升,吳健.去耦電容特性阻抗反諧振點(diǎn)的分析與應(yīng)用[J].電子技術(shù)應(yīng)用,2013,39(9):61-62,69.

[18] CARRIO F,GONZALEZ V,SANCHIS E,et al.A capacitor selector tool for on-board PDN designs in multigigabit applications[C].2011 IEEE International Symposium on Electromagenetic Compatibility(EMC).IEEE,2011:367-372.

[19] Wang Lixin,Zhang Yuxia,Zhang Gang.Power integrity analysis for high-speed PCB[C].2010 First International Conference on Pervasive Computing,Signal Processing and Applications,2010:414-418.

[20] DREWNIAK J.Power integrity concepts for high-speed design on multi-layer PCBs[C].2017 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity(EMCSI),2017:1-41.

[21] 李晉文,曹躍勝,胡軍,等.基于動(dòng)態(tài)目標(biāo)阻抗的DDR3電源完整性仿真[J].計(jì)算機(jī)工程與科學(xué),2014,36(3):399-403.

[22] SHEN W,TANG W M,WANG Y.Analysis of power integrity for high-speed PCB[J].Modern Electronic Technology,2009(24):213-218.

[23] He Yan,Liang Changhong,Liu Qinghuo.Novel array EBG sructure for ultrawideband simulataneous switching noise supression[J].IEEE Antennas and Wireless Propagation Letters,2011,10:588-591.

[24] 王曉.高速芯片電源/地線網(wǎng)的信號(hào)完整性分析[D].上海:上海交通大學(xué),2007.



作者信息:

孟祥勝,車  凱,栗曉鋒,李玖法,李蘇炫,何雪琴

(湖北汽車工業(yè)學(xué)院 電氣與信息工程學(xué)院,湖北 十堰442002)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
主站蜘蛛池模板: 甜性涩爱免费看 | 国产一精品一av一免费爽爽 | 精品一区二区视频在线观看 | 久久精品国产999久久久 | 免费一级欧美在线观看视频片 | 天天射天天干 | 亚洲国产爱 | 精品视频网站 | 久久激情视频 | 影音先锋最新资源网 | 中文字幕在线看片成人 | 性猛交╳xxx乱大交 性美国xxxxx免费 | 国产一级一级片 | 欧美精品一二三区 | 免费看欧美一级特黄a大片一 | 国产成人自啪精品视频 | 免费国产不卡午夜福在线观看 | 成人欧美一区二区三区黑人免费 | 成 人 黄 色 视频165 | 中文国产成人精品少久久 | 99精品免费视频 | 福利片免费观看 | 日本福利在线观看 | 国产精品每日更新在线观看 | 国产一区二区三区四 | 亚洲香蕉一区二区三区在线观看 | 人人爱天天做夜夜爽 | 一区二区三区日本 | 天天夜夜爽 | 嫩草影院永久在线一二三四 | 青草网在线观看 | 成年人深夜福利 | 香港一级a毛片在线播放 | 亚洲福利网站 | 国产成人精品一区二三区在线观看 | 九九成人免费视频 | 国产精品亚洲精品日韩动图 | 一级做a爰片毛片 | 成人黄色一级片 | 激情图片五月天 | 国产在线成人精品 |