文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.190567
中文引用格式: 林安娜,謝運祥. 一種交錯并聯Boost PFC變換器的控制方法[J].電子技術應用,2019,45(9):106-109.
英文引用格式: Lin Anna,Xie Yunxiang. A control method for interleaved Boost PFC converter[J]. Application of Electronic Technique,2019,45(9):106-109.
0 引言
隨著社會和科技的發展,電力電子設備被廣泛用于人們的生產生活,由此導致電網輸入側電流畸變,諧波污染和功率因數降低等問題日益嚴重[1]。采用功率因數校正(Power Factor Correction,PFC)技術能有效解決這些問題。隨著PFC技術研究的不斷深入,無橋PFC和交錯并聯Boost PFC等新拓撲被提出[2-4]。其中,交錯并聯Boost PFC變換器可以降低器件應力、減小輸入電流紋波幅值,有利于減小電感體積和提高功率等級,具有重要的研究意義[5-6]。
交錯并聯Boost PFC變換器按電感電流是否連續可分為CCM、DCM和CRM三種工作模式。相比于CCM和DCM模式,CRM模式具有二極管無反向恢復,開關損耗和器件應力較小等優勢[7],主要用于中小功率場合。變換器工作在CRM模式時,通常采用電流互感器來檢測電感電流,或者通過檢測電感輔助繞組上的電壓,得到控制開關管導通的電感電流過零信號[8-11]。但這些方法增加了電路的體積、成本和設計難度。此外,電感電流降為零之后,電感和MOS管寄生電容諧振會使電感電流進一步下降[12],導致電感電流平均值偏低,產生輸入電流波形畸變的現象。
本文針對上述問題,在對交錯并聯CRM Boost PFC變換器工作原理分析的基礎上,提出了一種新的控制方法,通過新型開關管電壓檢測電路對MOS管漏源電壓進行檢測,得到控制開關管導通的過零信號ZCD,并采用開關管導通時間補償策略。該方法簡單高效,實現了開關管的零電壓開通或谷底開通,提高了電感電流平均值,具有使變換器開關損耗小,輸入電流THD小等優點。最后,搭建了一臺800 W的樣機進行了實驗驗證。
1 交錯并聯CRM Boost PFC變換器工作原理
交錯并聯Boost PFC變換器的拓撲結構如圖1所示,它由整流橋,升壓電感L1、L2,開關管S1、S2,二極管VD1、VD2,輸出電容Co和負載組成,可以看作是兩相參數相同的Boost PFC電路并聯而成。
交錯并聯Boost PFC變換器工作在CRM模式時的電感電流理想波形如圖2所示。兩個開關管的驅動信號相位相差180°,兩路電感電流波形相位相差180°,電感電流峰值包絡線為正弦。采用交錯并聯技術具有降低器件應力、減小輸入電流紋波幅值、提高輸入電流紋波頻率等優點。
交錯并聯Boost PFC變換器中兩相Boost PFC電路的工作原理相同。為了簡化分析,在一個開關周期內,介紹單相Boost PFC電路工作在CRM模式時的工作過程,如圖3所示。工作過程可分為5個階段。
(1)[t0~t1]階段:t0時刻,MOS管S1導通,輸入電流經整流橋給電感L1充電,電感電流iL1線性上升。同時,電容Co向負載提供能量。t1時刻, MOS管S1關斷。該階段方程為:
(2)[t1~t2]階段:MOS管S1關斷后,電感L1和MOS管寄生電容C1發生諧振,電感電流對C1充電。由于上階段S1導通,C1兩端電壓為0。諧振開始后,C1充電,當uC1=Vo時,諧振結束。
(3)[t2~t3]階段:t2時刻,二極管VD1導通,輸入電壓和升壓電感向負載提供能量,電感電流iL1線性下降。t3時刻,電感電流降為0。該階段方程為:
(4)[t3~t4]階段:電感L1和MOS管寄生電容C1發生諧振。由于上階段S1關斷,C1兩端電壓為Vo。諧振開始后,C1放電,當uC1=0時,諧振結束。該階段方程為:
因此,當Vo>2Vin時,開關管寄生電容C1的電荷被完全抽走,開關管實現零電壓開通;當Vo<2Vin時,電容C1兩端的電壓無法下降到0,開關管實現谷底開通。
(5)[t4~t5]階段:t4時刻,MOS管寄生二極管D1導通,電感電流iL1流經整流橋和二極管D1,電感電流下降。t5時刻,電感電流降為0,該階段結束。接下來重復t0~t5階段的工作過程。
2 CRM模式的控制方法
為了得到交錯并聯CRM Boost PFC變換器中控制開關管導通的過零信號ZCD,本文提出了一種基于新型開關管電壓檢測電路的控制方法。該方法首先通過開關管電壓檢測電路,檢測MOS管兩端的漏源電壓Vds,然后將檢測的信號VDSP送入DPS內部比較器進行處理,得到過零信號ZCD,最后采用開關管導通時間補償策略控制MOS管導通。
2.1 開關管電壓檢測電路
開關管電壓檢測電路如圖4所示,其主要工作波形如圖5所示。
從圖5中可以看出,進入DSP的信號VDSP會隨著MOS管漏源電壓Vds1的下降而下降。設置DSP內部比較器的負相端輸入為信號VDSP,正相端為閾值信號,當信號VDSP小于閾值信號時,會產生過零信號ZCD。DSP檢測到過零信號ZCD后,會產生驅動信號使MOS管導通,直至MOS管導通時間達到Ton時,使MOS管關斷,等待下一次過零信號ZCD的到來,如此循環。該檢測電路的結構簡單、成本較低,能夠準確檢測MOS管漏源電壓諧振到零或波谷的時刻,得到過零信號ZCD,使交錯并聯Boost PFC變換器工作在CRM模式,實現MOS管的零電壓開通或谷底開通。
2.2 開關管導通時間補償策略
單相Boost PFC電路輸入電壓的表達式為:
穩態工作時,導通時間Ton為常數。因此,理論上電感電流平均值的波形是一個跟隨輸入電壓的正弦波,從而工頻周期內輸入電流也是正弦波。實際上,由于電感和MOS管寄生電容諧振,電感電流會反向。反向的電感電流拉低了電感電流平均值,使輸入電流小于正常值,導致輸入電流波形畸變和功率因數校正效果不佳。基于上述原因,需要對開關管的導通時間進行補償,通過增加電感電流的峰值,提高電感電流的平均值。補償前后電感電流波形如圖6所示。
由電路工作原理和諧振原理可得,反向電感電流峰值的表達式為:
式中,k為修正系數,由電感和MOS管的參數確定。值得注意的是,當輸入電壓瞬時值較小時,按照公式(14)計算出的開關管導通時間補償值較大,會導致補償后電感電流值偏大的情況。因此,對于輸入電壓過零階段,通過檢測上一個開關周期的開關管關斷時間,計算開關管關斷時間真實值和理論值的誤差Toff_err,確定開關管導通時間補償值tcomp2為:
采用開關管導通時間補償策略,可以增加電感電流的峰值,提高電感電流平均值,使輸入電流良好跟隨輸入電壓,實現PF接近于1和低THD的目標。
3 實驗驗證
為了驗證本文提出的控制方法,搭建了一臺基于TMS320F28022型DSP的交錯并聯Boost PFC變換器進行實驗驗證。電路參數為:輸入交流電壓90~265 V,輸出電壓Vo=410 V,輸出功率Po=800 W,電感L=180 μH,電容Co=990 μF。
開關管零電壓開通和谷底開通的實驗波形如圖7所示。從圖7(a)中可以看出,開關管在Vds的電壓下降到零后才開通,即實現零電壓開通。從圖7(b)中可以看出,開關管在Vds的電壓諧振到谷底時才開通,即實現谷底開通。此時,交錯并聯Boost PFC變換器工作在CRM模式。
當輸入交流電壓有效值為220 V時,變換器采用開關管導通時間補償策略前后的輸入電壓和輸入電流的實驗波形如圖8所示。補償前輸入電流諧波畸變率THD值為12.71%,補償后THD值降低為3.888%。此時,交錯并聯Boost PFC變換器功率因數PF值為0.992。采用開關管導通時間補償策略能夠改善輸入電流波形畸變,使輸入電流良好跟隨輸入電壓。
4 結論
本文介紹了交錯并聯CRM Boost PFC變換器的工作原理,提出了一種新的控制方法,通過檢測MOS管的漏源電壓,并采用開關管導通時間補償策略,控制MOS管導通。該方法簡單有效,實現了開關管零電壓開通或谷底開通,能夠使變換器輸入電流良好跟隨輸入電壓。通過實驗,驗證了該方法的有效性和可行性,它能夠降低變換器開關損耗,同時使變換器具有高功率因數和低THD。
參考文獻
[1] 王源卿,李紅梅.電動汽車車載充電器PFC AC/DC變換器設計[J].電子技術應用,2015,41(2):152-155,159.
[2] FARDOUN A A,ISMAIL E H,ALSAFFAR M A,et al.A bridgeless resonant pseudoboost PFC rectifier[J].IEEE Transactions on Power Electronics,2014,29(11):5949-5960.
[3] WANG H,DUSMEZ S,KHALIGH A.Design considerations for a level-2 on-board PEV charger based on interleaved boost PFC and LLC resonant converters[C].2013 IEEE Transportation Electrification Conference and Expo(ITEC),2013.
[4] 陳勇,代文平,周俊.一種基于新型無橋Boost PFC的通信電源AC/DC變換器設計[J].電力系統保護與控制,2013,41(12):123-130.
[5] 嚴利民,李茂澤,姜玉稀,等.電壓型CRM Boost PFC小信號建模分析與補償設計[J].電子技術應用,2015,41(1):145-148.
[6] 劉欣睿,林競力,郭筱瑛,等.交錯并聯CCM Boost PFC變換器研究[J].電子技術應用,2018,44(8):143-146.
[7] 王祎.CRM Boost PFC變換器開關頻率變化范圍的優化控制[D].南京:南京理工大學,2017.
[8] 劉雪山,許建平,王楠,等.臨界連續模式單電感雙輸出Buck-Boost功率因數校正變換器[J].中國電機工程學報,2014,34(15):2379-2387.
[9] 徐攀.單相PFC多重化的研究[D].北京:北京交通大學,2013.
[10] 楊飛.采用耦合電感的交錯并聯Boost PFC變換器[D].南京:南京航空航天大學,2013.
[11] 閻鐵生,許建平,張斐,等.變導通時間控制臨界連續模式反激PFC變換器[J].中國電機工程學報,2013,33(27):60-68,10.
[12] 徐厚建,姚文熙.基于開關管電壓檢測的圖騰柱整流器控制方案[J].浙江大學學報(工學版),2018,52(9):1771-1776.
作者信息:
林安娜,謝運祥
(華南理工大學 電力學院,廣東 廣州510640)