文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.222731
中文引用格式: 韋詩玥,徐洪珍. 基于改進BCCSA和深層LSTM的空氣質量預測方法[J].電子技術應用,2022,48(6):28-32.
英文引用格式: Wei Shiyue,Xu Hongzhen. Air quality prediction method based on improved BCCSA and deep LSTM[J]. Application of Electronic Technique,2022,48(6):28-32.
0 引言
隨著社會的發展和生活質量的提高,人們不再是關注溫飽問題,更多地開始關注健康問題。被污染了的空氣會給人類健康帶來危害,特別是在人口稠密的地區[1]。空氣質量是一個十分復雜的現象,會受到許多因素的影響[2]。空氣質量能夠通過計算空氣中的污染物來反映空氣污染的嚴重程度,通常用空氣質量指數(Air Quality Index,AQI)來進行定量描述。有效的空氣質量預測能夠為人們提供及時的空氣質量警報,能夠使政府部門及時干預高污染事件,能夠提醒人們是否適宜進行戶外活動。嚴重的空氣污染不僅會影響人們的生活,更會影響人們的生命健康[3]。準確地進行空氣質量預測對國家、政府、民眾來說都是一件重要的事。
空氣質量數據具有明顯的季節性,如果忽視這一因素,會導致對空氣質量數據的預處理不夠充分并且預測精度不夠高,所以本文提出季節調整的空氣質量數據預處理方法。本文首次將二元混沌烏鴉搜索算法(Binary Chaotic Crow Search Algorithm,BCCSA)應用于空氣質量數據的預測,能夠更好地優化非線性、非平穩的空氣質量數據,并針對BCCSA存在的不足,提出3種改進方法用以提高它的收斂速度。本文還將自注意力機制與深層長短期記憶神經網絡(Long Short Term Memory,LSTM)相結合來預測經過處理的空氣質量數據,能有效挖掘空氣質量數據中隱藏的時間序列信息,提高了方法的預測精度。現有的研究大多都是對空氣質量進行未來幾個小時的短期預測,而本文對空氣質量進行了未來24小時的預測,并且具有較高的精度。
本文詳細內容請下載:http://www.viuna.cn/resource/share/2000004414。
作者信息:
韋詩玥,徐洪珍
(東華理工大學 信息工程學院,江西 南昌330013)