《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于Involution Prediction Head的小目標檢測算法
基于Involution Prediction Head的小目標檢測算法
2022年電子技術應用第11期
安鶴男1,鄧武才1,管 聰2,姜邦彥2
1.深圳大學 電子與信息工程學院,廣東 深圳518000;2.深圳大學 微納光電子學研究院,廣東 深圳518000
摘要: 針對通用目標檢測算法在檢測小目標時存在錯檢和漏檢等問題,提出了一種小目標檢測算法IPH(Involution Prediction Head),將其運用在YOLOv4和YOLOv5的檢測頭部分,在VOC2007數據集上的實驗結果表明,運用IPH后的YOLOv4小目標檢測精度APs(AP for small objects)相比原始算法提升了1.1%,在YOLOv5上的APs更是提升了5.9%。經智能交通檢測數據集進一步檢驗,IPH算法和去下采樣能有效提升小目標檢測精度,減少錯檢和漏檢的情況。
中圖分類號: TP391.4
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.223161
中文引用格式: 安鶴男,鄧武才,管聰,等. 基于Involution Prediction Head的小目標檢測算法[J].電子技術應用,2022,48(11):19-23.
英文引用格式: An Henan,Deng Wucai,Guan Cong,et al. Small object detection algorithm based on involution prediction head[J]. Application of Electronic Technique,2022,48(11):19-23.
Small object detection algorithm based on involution prediction head
An Henan1,Deng Wucai1,Guan Cong2,Jiang Bangyan2
1.College of Electronics and Information Engineering,Shenzhen University,Shenzhen 518000,China; 2.Institute of Microscale Optoelectronics,Shenzhen University,Shenzhen 518000,China
Abstract: Aiming at the problems of false positive detection and low recall in the detection of small targets by the general target detection algorithm, a small target detection algorithm IPH(involution prediction head) is proposed, which is applied to the detection head of YOLOv4 and YOLOv5. The experimental results on the VOC2007 data set show that the detection accuracy APs(AP for small objects) of YOLOv4 after using IPH is improved by 1.1% compared with the original algorithm, and the APs on YOLOv5 is improved by 5.9%. Through further verification of the intelligent traffic detection data set, IPH algorithm and desampling can effectively improve the accuracy of small object detection and reduce false positive detection and missed detection.
Key words : YOLOv4;involution prediction head;small object detection;feature extraction;attention module

0 引言

    目標檢測是計算機視覺領域的一項基本任務。隨著硬件GPU以及卷積神經網絡(Convolution Neural Networks,CNN)的不斷發展,目標檢測取得了顯著的發展,已廣泛應用于自動駕駛、視覺搜索、虛擬現實、增強現實等許多應用領域[1]。目前大多數最先進的目標檢測深度學習算法都是基于CNN,主要分為兩大類:兩階段(Two-stage)目標檢測器和單階段(One-stage)目標檢測器。Two-stage檢測器的典型網絡有fast R-CNN[2]、mask R-CNN[3]和faster R-CNN[4]。卷積神經網絡將目標檢測的過程分為兩個步驟,先使用區域生成網絡(Region Proposal Networks,RPN)生成稀疏的候選錨框,然后檢測對象的位置和類別。而One-stage算法則是端到端的目標檢測方法,這類算法直接用一個CNN網絡預測目標的位置和類別,不需要RPN網絡來生成錨框,因而檢測速度更快。One-stage檢測器的典型網絡有SSD[5]和YOLO[6-9]系列模型。

    小目標檢測廣泛存在于目標密集圖像和遠距離成像目標圖像中,作為目標檢測的一部分,在現實中有著同樣重要的需求。無論是車牌號檢測、焊縫圖像檢測, 還是無人機航拍圖像,許多場景中都有小目標的存在。 但由于小目標像素信息占比小、紋理特征不明顯,小目標的檢測比大中型目標的檢測更為困難。由此可知, 小目標檢測是目標檢測研究領域中具有重要性和挑戰性的研究方向。




本文詳細內容請下載:http://www.viuna.cn/resource/share/2000004999




作者信息:

安鶴男1,鄧武才1,管  聰2,姜邦彥2

(1.深圳大學 電子與信息工程學院,廣東 深圳518000;2.深圳大學 微納光電子學研究院,廣東 深圳518000)




wd.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 中国野外性xxxx | 成人特黄午夜性a一级毛片 成人网18免费软件 成人网免费 | 成 人 黄 色 大片 | 亚洲精品美女视频 | 毛片网站网址 | 欧美另类高清xxxxx | 亚洲人成网站在线观看90影院 | 免费一级a毛片在线播出 | 一级黄色α片 | 视频精品一区二区三区 | b毛片| 日韩高清成人毛片不卡 | 丝袜美女在线播放 | 亚洲看片网 | 日本3级视频 | 九九精品视频在线播放8 | 亚洲国产精品久久久久久网站 | 欧美日韩在线精品成人综合网 | 最近2019年最中文字幕视频 | 一级成人毛片免费观看 | 国产精品1024在线永久免费 | 精品午夜国产在线观看不卡 | 欧美日韩国产一区二区三区播放 | 狠狠色婷婷 | 日韩视频免费观看 | 综合激情区视频一区视频二区 | 一级全黄视频 | 日皮黄色| 高清国产精品入口麻豆 | 亚洲高清一区二区三区久久 | 最新国产精品精品视频 | 日日噜噜夜夜狠狠 | 欧美成人亚洲国产精品 | 午夜男人剧场 | 欧美一级在线看 | 日本r级在线观看播放 | 国产真实一区二区三区 | 97精品国产高清久久久久蜜芽 | 曰批全过程免费视视频观看 | 男女午夜 | 日本aⅴ网站 |