基于SDNSR-Net深度網絡的大規模MIMO信號檢測算法
2022年電子技術應用第11期
曾相誌,申 濱,陽 建
重慶郵電大學 通信與信息工程學院,重慶400065
摘要: 大規模多輸入多輸出(MIMO)系統能有效地提高頻譜效率,當天線規模漸進趨向于無窮時,最小均方誤差(MMSE)檢測算法能達到接近最優的檢測性能。然而由于算法中存在矩陣求逆的步驟,帶來極高的計算復雜度,在大規模MIMO系統中難以實現。理查森(Richardson)算法能夠在不對矩陣求逆的情況下,以迭代的形式達到MMSE算法的檢測性能,但該算法受其松弛參數影響較大。在結合最陡梯度下降算法的Richardson算法(SDNSR)中,松弛參數的誤差可由梯度下降算法彌補,卻提高了計算復雜度。首先通過深度展開的思想,將SDNSR的迭代過程映射為深度檢測網絡(SDNSR-Net);然后,通過修改網絡結構及添加可訓練參數來降低計算復雜度并提高檢測精度。實驗結果表明,在上行鏈路大規模MIMO系統中不同信噪比和天線配置的情況下,SDNSR-Net都優于其他典型的檢測算法,可作為實際中有效的待選檢測方案。
中圖分類號: TN925
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.222520
中文引用格式: 曾相誌,申濱,陽建. 基于SDNSR-Net深度網絡的大規模MIMO信號檢測算法[J].電子技術應用,2022,48(11):84-88.
英文引用格式: Zeng Xiangzhi,Shen Bin,Yang Jian. Signal detection based on SDNSR-Net deep network for massive MIMO systems[J]. Application of Electronic Technique,2022,48(11):84-88.
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.222520
中文引用格式: 曾相誌,申濱,陽建. 基于SDNSR-Net深度網絡的大規模MIMO信號檢測算法[J].電子技術應用,2022,48(11):84-88.
英文引用格式: Zeng Xiangzhi,Shen Bin,Yang Jian. Signal detection based on SDNSR-Net deep network for massive MIMO systems[J]. Application of Electronic Technique,2022,48(11):84-88.
Signal detection based on SDNSR-Net deep network for massive MIMO systems
Zeng Xiangzhi,Shen Bin,Yang Jian
School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications, Chongqing 400065,China
Abstract: Massive multiple-input multiple-output(MIMO) systems can effectively improve the spectrum efficiency. When the antenna scale gradually tends to infinity, the minimum mean square error(MMSE) detection algorithm can achieve near-optimal detection performance. However, due to the matrix inversion required in the algorithm, which brings extremely high computational complexity, it is difficult to implement in a massive MIMO system. The Richardson algorithm can achieve the detection performance of the MMSE algorithm in an iterative form without matrix inversion, but the algorithm is greatly affected by its relaxation parameters. In the Richardson algorithm combined with the steepest gradient descent algorithm (SDNSR), the error of the relaxation parameter can be compensated by the gradient descent algorithm, but the computational complexity is increased. This paper firstly uses the idea of deep expansion to map the iterative process of SDNSR to a deep detection network (SDNSR-Net); then, by modifying the network structure and adding trainable parameters,the computational complexity is reduced and the detection accuracy is improved. The experimental results show that SDNSR-Net is superior to other typical detection algorithms in the case of different signal-to-noise ratios and antenna configurations in the uplink massive MIMO system and can be used as an effective detection scheme in practice.
Key words : massive MIMO system;signal detection;modern driven;deep learning
0 引言
大規模MIMO系統中存在信道硬化現象,即由信道矩陣生成的Gram矩陣的對角項遠大于非對角項。在該情況下最小均方誤差(Minimum Mean Square Error,MMSE)檢測算法已證明可以達到次優的檢測性能[1]。然而該算法中存在矩陣求逆運算,因此難以適用于大規模MIMO系統。
為降低線性檢測算法的計算復雜度,出現了Richardson迭代[2]、Jacobi迭代[3]和逐次超松弛(Successive Over Relaxation,SOR)迭代[4]等迭代檢測算法。然而,在大規模MIMO系統中,隨著用戶增加,該類算法的檢測性能退化嚴重。
深度學習技術作為一種流行的人工智能技術,目前已開始應用于解決信號檢測的問題。例如:Ye[5]等人提出利用深度神經網絡進行OFDM系統的信道估計和信號檢測;Samuel[6]等人提出的DetNet通過將投影梯度下降算法的迭代過程展開為網絡,從而獲得了良好的檢測性能;He[7]等人提出了OAMPNet,在傳統的OAMP檢測算法的基礎上增加了一些可優化參數,在不增加額外復雜度的同時獲得了更好的檢測性能。
本文詳細內容請下載:http://www.viuna.cn/resource/share/2000005010。
作者信息:
曾相誌,申 濱,陽 建
(重慶郵電大學 通信與信息工程學院,重慶400065)
此內容為AET網站原創,未經授權禁止轉載。