文獻標志碼:A
DOI: 10.16157/j.issn.0258-7998.222900
中文引用格式: 杜婷婷,鐘國韻,江金懋,等. 基于Darknet23和特征融合的交通標志檢測方法[J]. 電子技術應用,2023,49(1):14-19.
英文引用格式: Du Tingting,Zhong Guoyun,Jiang Jinmao,et al. Traffic sign′s detection method based on Darknet23 and feature fusion[J]. Application of Electronic Technique,2023,49(1):14-19.
0 引言
隨著全球汽車數量的逐漸增加,智能交通系統(Intelligent Traffic System,ITS)迎來了新的發展機遇。交通標志檢測與識別技術作為在ITS中的一種關鍵技術應用,它可以輔助駕駛員準確、高效地識別道路交通標志,有效減輕駕駛疲勞,從而保障安全駕駛。因此,在真實路況下準確并及時地檢測出交通標志,對無人駕駛、高級輔助駕駛系統具有重要的現實意義。而在駕駛過程中,獲取的交通標志圖像存在背景復雜、目標小和光照天氣變化等問題,導致交通標志的誤檢或漏檢。
針對上述問題,近年來相關專家學者提出了許多不同的檢測方法,主要可以分為兩類:傳統交通標志檢測方法和基于深度學習的交通標志檢測方法。傳統的檢測方法分為基于顏色空間[1]、基于形狀特征[2]和基于多特征融合[3],這3類方法往往面臨諸如遮擋、褪色和環境等各種因素的影響而造成檢測精度下降的問題。在這些方法的基礎上,相關研究人員進行了深入的研究和優化,提出了基于深度學習的檢測方法,分為基于錨框和不基于錨框兩種。目前主流的算法基于錨框的,具體分為兩階段(Two-Stage)和單階段(One-Stage)兩種。前者的典型代表是Zuo Z[4]提出的Faster RCNN和徐國整[5]提出的改進Cascade R-CNN方法,這類算法首先在特征層上通過區域生成網絡(Region Proposal Network,RPN)提取可能存在交通標志的預選框,再用對其進行檢測,雖然可以大幅度提高檢測精度,但由于計算量過大,檢測速度較慢;后者的典型代表有Redmon J[6-8] 提出的YOLO系列和孫超[9]提出的改進SSD方法,此類方法是直接對輸入圖像做回歸任務,得到目標框的左上角、右下角坐標和類別信息,在輸出層上一次性完成預測,雖然檢測速快,適合做實時檢測任務,但因為中間不需要額外的映襯,在檢測精度上會略有欠缺。張建民[10]等提出了融合注意力機制的Cascaded R-CNN算法,在CCTSDB數據集上mAP@0.5達到99.7%,但模型的平均檢測速度僅為7.6 f/s;鮑敬源[11]等提出了Strong Tiny-YOLOv3算法,雖然在速度上達到33.78 f/s,但在mAP@0.5上只有85.56%。因此,本文提出一種兼檢測精度高和速度快的交通標志檢測方法。
本文詳細內容請下載:http://www.viuna.cn/resource/share/2000005069。
作者信息:
杜婷婷,鐘國韻,江金懋,任維民
(東華理工大學 信息工程學院,江西 南昌 330013)