《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于深度自適應小波網絡的通信輻射源個體識別
基于深度自適應小波網絡的通信輻射源個體識別
網絡安全與數據治理 2023年第5期
劉高輝,于文濤
(西安理工大學自動化與信息工程學院,陜西西安710048)
摘要: 針對現有的通信輻射源個體識別方法中人工提取特征復雜以及深度學習網絡的識別機制缺乏清晰解釋的問題,提出了一種基于深度自適應小波網絡(Deep Adaptive Wavelet Network,DAWN)的通信輻射源個體識別方法。首先分析了選擇互調干擾作為輻射源間個體特征的原因;接著應用了可實現提升小波變換的卷積神經網絡結構去提取特征,并在其基礎上設計出可以同時完成特征提取和識別的DAWN;最后,選擇Oracle數據集驗證方法的可行性。實驗結果表明:利用DAWN對5個通信輻射源個體識別的準確率為95.5%,并且方法具有良好的抗噪性。
中圖分類號:TN911.7
文獻標識碼:A
DOI:10.19358/j.issn.2097-1788.2023.05.012
引用格式:劉高輝,于文濤.基于深度自適應小波網絡的通信輻射源個體識別[J].網絡安全與數據治理,2023,42(5):71-77.
Individual recognition of communication radiation source based on depth adaptive wavelet network
Liu Gaohui,Yu Wentao
(Automation and Information Academy,Xi'an University of Technology,Xian 710048,China)
Abstract: Aiming at the problem of the complex artificial features extracted in the existing individual recognition methods of communication radiation sources and the lack of clear interpretation of the recognition mechanism of deep learning networks, an individual recognition method of communication radiation sources based on Deep Adaptive Wavelet Network (DAWN) is proposed. Firstly, the intermodulation interference is analyzed as the reason for individual characteristics between radiation sources. Then, the convolutional neural network structure that can realize lifting wavelet transform is applied to extract features, based on which DAWN can complete feature extraction and recognition at the same time. Finally, Oracle data sets are selected to verify the feasibility of the method. The experimental results show that the accuracy of identification of 5 communication radiation sources by DAWN is 955%, and the method has good antinoise performance.
Key words : specific emitter identification;lifting wavelet transform;depth adaptive wavelet network

0     引言

隨著物聯網和通信技術的發展,無線設備呈現出指數級的增長態勢,未來海量的敏感機密數據將在無線設備間傳輸,所以對通信輻射源進行個體識別對保證無線通信網絡中的信息安全有著重要的實際意義。



本文詳細內容請下載:http://www.viuna.cn/resource/share/2000005337




作者信息:

劉高輝,于文濤

(西安理工大學自動化與信息工程學院,陜西西安710048)


微信圖片_20210517164139.jpg

此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 天天做天天爱夜夜爽 | 日本中文字幕在线视频 | 人成网站在线观看 | 日韩伦理一区 | 久中文字幕中文字幕亚洲无线 | 午夜羞羞| 青青草成人免费 | 狍和美女一级aa毛片 | 亚洲欧洲日韩 | 日本精品视频一区二区 | 天天天天天天干 | 久久国产免费观看精品1 | 美女18黄 | 免费观看a级完整视频 | 欧美白人最猛性xxxxx | 欧美一区二区三区高清视频 | 免费大片av手机看片 | hd性videos意大利精品 | 天天操天天操天天干 | 小明爱看看永久成人免费平台 | 99视频精品全部国产盗摄视频 | 国产成人精品免费视频软件 | 日日干夜夜欢 | 又色又爽又黄的网站 | 欧美a级片在线观看 | 波多野结衣一区二区三区88 | 网站免黄| 在线成人免费看大片 | 伦理第一页 | 美女福利影院 | japanhd日本xxxxx | 动漫美女胸被狂揉扒开吃奶动态图 | 天堂在线资源网 | 精品日本亚洲一区二区三区 | 久久网免费视频 | 亚洲午夜在线观看 | 免费在线精品视频 | 免费 黄 色 人成 视频 | 色秀视频免费高清网站 | 在线成人福利 | 一个人看的www高清免费 |