中文引用格式: 王繹翔. 用于主動學習的時序特征融合預測損失網絡[J]. 電子技術應用,2024,50(6):10-17.
英文引用格式: Wang Yixiang. Temporal feature fusion learning loss model for active learning[J]. Application of Electronic Technique,2024,50(6):10-17.
引言
近年來,深度網絡在多個任務中取得了許多突破性進展[1]。但是,深度網絡的訓練需要大量的標注數據,在很多任務中,標注數據的獲取需要專家進行標注,成本很高。
主動學習是一種可行的用于減少模型對標注數據量依賴的方法。主動學習模型主要由3個部分組成,即目標任務模塊、主動學習模塊和標注模塊。目標任務模塊用于在現有的標注數據集上訓練用于目標任務(分類、分割等)的模型。主動學習模塊通過主動學習的選擇算法來選擇合適的樣本用于標注。注釋模塊主要根據主動學習模塊選擇的樣本為其打上標簽并放入標注數據集中用于下一輪訓練。在一般的任務中,注釋模塊由專家來完成,專家為選擇的樣本標注后加入到標注數據集中。因此,設計主動學習的選擇算法是主動學習的核心任務。
現有的選擇算法主要有三類,即基于樣本的不確定性的算法、基于樣本的多樣性的算法以及不確定性和多樣性結合的算法。其中,早期的選擇算法在文獻[2]中進行描述。基于樣本的不確定性的算法選擇對于任務模型而言預測最不確定的數據交給專家進行標注[3-4]。基于樣本的多樣性的算法則選擇最具有多樣性或代表性的數據交給專家進行標注[5-6]。不確定性和多樣性結合的算法則綜合以上兩點來對樣本進行評估和選擇[7]。
目前的主動學習模型主要有任務依賴的模型和任務不可知的模型兩類。大多數主動學習模型屬于任務依賴型主動學習模型[8]。針對某項特定的目標任務進行選擇算法的設計,這些算法往往只能適用于某項特定任務,可擴展性和任務泛化性較差。近年來,許多與任務無關的主動學習模型被提出并用于各個任務中,這類模型在多類任務中都有很好的效果。
本文詳細內容請下載:
http://www.viuna.cn/resource/share/2000006022
作者信息:
王繹翔
(寧波大學 信息科學與工程學院, 浙江 寧波 355211)