《電子技術應用》
您所在的位置:首頁 > 通信與網絡 > 設計應用 > 基于多模態特征融合的Android惡意程序檢測方法研究
基于多模態特征融合的Android惡意程序檢測方法研究
電子技術應用
葛繼科,何明坤,陳祖琴,凌勁,張一帆
重慶科技大學 計算機科學與工程學院
摘要: 現有Android惡意程序檢測方法主要使用單模態數據來表征程序特征,未能將不同的特征信息進行充分挖掘和融合,導致檢測效果不夠理想。為了提升檢測的準確率和魯棒性,提出一種基于多模態特征融合的Android惡意程序檢測方法。首先對權限信息進行編碼處理并將Dalvik字節碼數據可視化為“矢量”RGB圖像,然后構建前饋神經網絡和卷積神經網絡分別對文本和圖像模態表征的數據進行特征提取,最后對提取的不同模態特征向量分配不同的權重并相加進行融合后對其進行分類。實驗結果表明,該方法對Android惡意程序的識別準確率和F1分數都達到了98.66%,且具有良好的魯棒性。
中圖分類號:TP309.5 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245881
中文引用格式: 葛繼科,何明坤,陳祖琴,等. 基于多模態特征融合的Android惡意程序檢測方法研究[J]. 電子技術應用,2025,51(1):62-68.
英文引用格式: Ge Jike,He Mingkun,Chen Zuqin,et al. Research on Android malware detection method based on multimodal feature fusion[J]. Application of Electronic Technique,2025,51(1):62-68.
Research on Android malware detection method based on multimodal feature fusion
Ge Jike,He Mingkun,Chen Zuqin,Ling Jin,Zhang Yifan
School of Computer Science and Engineering, Chongqing University of Science and Technology
Abstract: Existing Android malware detection methods mainly use single-modal data to characterize program features, but fail to fully mine and fuse different feature information, resulting in unsatisfactory detection results. In order to improve the accuracy and robustness of detection, a method for detecting Android malware based on multimodal feature fusion is proposed. Firstly, the permission information is encoded and the Dalvik bytecode data is visualized as a “vector” RGB image. Then, a feedforward neural network and a convolutional neural network are constructed to extract features from the data represented by text and image modalities, respectively. Finally, different weights are assigned to the extracted feature vectors of different modalities, which are added and fused before classification. Experimental results show that the recognition accuracy and F1 score of this method for Android malware both reach 98.66%, and it has good robustness.
Key words : Android;malware;multimodality;feedforward neural network;convolutional neural network

引言

隨著移動互聯網技術的興起,移動終端設備的安全性得到了廣泛的關注。Android操作系統因其開源性以及廣泛的市場應用,成為移動終端設備的主要平臺,然而這也使其成為惡意程序攻擊的主要目標。Android惡意程序種類繁多,包括木馬軟件、勒索軟件、廣告軟件和間諜軟件等,這些惡意程序通過各種途徑入侵設備,嚴重威脅用戶的隱私和數據安全[1]。因此,有效地對Android惡意程序進行檢測對于保護用戶隱私數據及安全具有重要意義。

現有Android惡意程序檢測方法在對惡意程序的特征表示和利用上不夠全面,檢測效果不夠理想且魯棒性較差。為了能夠更加全面地表示惡意程序的特征以提高檢測效果,本文提出一種基于多模態特征融合的Android惡意程序檢測方法。該方法將多模態數據特征融合技術應用于Android惡意程序分析領域,使用文本和圖像兩種模態數據分別表征程序的權限特征和Dalvik字節碼特征,通過構建前饋神經網絡卷積神經網絡對其進行特征提取并對提取的特征向量進行加權融合后分類。

本文的主要工作及貢獻包括:

(1)提出一種基于多模態特征融合的Android惡意程序檢測方法,使用文本和圖像兩種不同的模態數據表征應用程序的特征;

(2)構建了動態權限表實現對權限信息的編碼處理,同時實現了將Dalvik字節碼可視化為“矢量”RGB圖像;

(3)構建了前饋神經網絡和卷積神經網絡對不同模態的特征數據進行特征提取,對提取到的特征加權后相加進行融合并分類。


本文詳細內容請下載:

http://www.viuna.cn/resource/share/2000006284


作者信息:

葛繼科,何明坤,陳祖琴,凌勁,張一帆

(重慶科技大學 計算機科學與工程學院,重慶 401331)


Magazine.Subscription.jpg


此內容為AET網站原創,未經授權禁止轉載。
主站蜘蛛池模板: 一个人看的www网站 一个人看的www在线 | 全免费a级毛片免费看不卡 全免费a级毛片免费毛视频 | 国产黄色激情视频 | 免费黄色大片视频 | 爆操极品美女 | 久久久久久网 | 久久天天躁狠狠躁夜夜躁综合 | 涩涩色中文综合亚洲 | 欧美我不卡 | 人人爱人人插 | 欧美视频在线免费看 | 国产高清视频在线观看不卡v | 青青免费在线视频 | 天天做天天爱夜夜想毛片 | 国产一级毛片视频在线! | 天天干干干干 | 97午夜理伦片在线影院 | 97狠狠干| 欧美日本高清视频在线观看 | 夜夜拍拍 | 日本人乱人乱亲乱色视频观看 | 韩国三级伦理片床在线播放 | 免费的一级片网站 | 亚洲成人婷婷 | 成人羞羞视频播放网站 | 一级一级毛片免费播放 | 亚洲国产第一区二区香蕉 | 久久精品国产亚洲网站 | 日本一区二区三区免费在线观看 | 欧美人成一本免费观看视频 | 一级特黄aaa大片在 一级特黄aaa大片在线观看 | 高清一区二区亚洲欧美日韩 | 青青草国产精品欧美成人 | 免费aa视频| 国产丝袜视频在线观看 | 视频二区国产 | 殴美一级 | 91视频com| 在线青草 | 浪浪视频成版人在线观看 | 国产2021精品视频免费播放 |