一種融合注意力和記憶網絡的序列推薦算法 | |
所屬分類:技術論文 | |
上傳者:muyx | |
文檔大小:1213 K | |
標簽: 注意力 記憶網絡 LSTM | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:傳統基于協同過濾和矩陣分解的靜態表示推薦算法,不能很好地體現用戶的動態興趣。循環神經網絡能夠進行序列推薦,但存在序列之間的長距離依賴性差、各項目的區分度差等問題。由此提出一種融合注意力和記憶網絡的序列推薦算法,根據Word2vec算法,引申item2vec和user2vec,初始化用戶和項目的固定表示嵌入矩陣,通過結合注意力機制和長短期記憶網絡(Long ShortTerm Memory,LSTM)解決序列之間的長距離依賴性差和區分度差問題。利用記憶網絡獲取用戶的動態鄰居,加強用戶的動態表示,實現更準確的推薦。通過在MovieLens數據集上的實驗結果表明,所提出的算法相比其他算法推薦效果顯著提高。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2