基于注意力機制的無監督單目標跟蹤算法 | |
所屬分類:技術論文 | |
上傳者:zhoubin333 | |
文檔大?。?span>910 K | |
標簽: 目標跟蹤 無監督學習 特征融合 | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:為提升目標跟蹤精度,設計一種基于注意力機制的無監督單目標跟蹤算法。該算法使用DCFNet網絡作為基本網絡,通過前向跟蹤和后向驗證實現無監督跟蹤。為結合上下文信息,引入特征融合方法,且將DCFNet網絡每一層所提取的特征通過雙線性池化調整分辨率以便進行特征融合;為關注不同特征通道上的關系,引入通道注意力機制SENet模塊;設計一個反向逐幀驗證方法,在反向驗證中間幀的基礎上再預測第一幀,進而減少判別位置的誤差。在公共數據集OTB-2015上的測試結果顯示,本算法AUC分數達60.6%,速度達61FPS。與無監督單目標跟蹤UDT算法相比,所設計算法取得了更優的目標跟蹤性能。 | |
現在下載 | |
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計算機系統工程研究所版權所有 京ICP備10017138號-2